Data availability
All raw data for this study were collected using the STAR detector at Brookhaven National Laboratory and are not available to the public. Derived data supporting the findings of this study are publicly available in the HEPData repository (https://www.hepdata.net/record/145132) or from the corresponding author on request.
Code availability
The codes to process raw data collected by the STAR detector are publicly available on GitHub77 (https://github.com/star-bnl). The codes to analyse the produced data are not publicly available.
References
STAR Collaboration et al. Experimental and theoretical challenges in the search for the quark–gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005).
PHENIX Collaboration et al. Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 757, 184–283 (2005).
PHOBOS Collaboration et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005).
Arsene, I. et al. Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005).
Muller, B., Schukraft, J. & Wyslouch, B. First results from Pb+Pb collisions at the LHC. Annu. Rev. Nucl. Part. Sci. 62, 361–386 (2012).
ADS CAS Google Scholar
Adam, J. et al. Beam energy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 99, 064905 (2019).
ADS CAS Google Scholar
The STAR Collaboration et al. Observation of an antimatter hypernucleus. Science 328, 58–62 (2010).
The STAR Collaboration et al. Observation of the antimatter helium-4 nucleus. Nature 473, 353–356 (2011).
Chen, J., Keane, D., Ma, Y.-G., Tang, A. & Xu, Z. Antinuclei in heavy-ion collisions. Phys. Rep. 760, 1–39 (2018).
The STAR Collaboration Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton. Nat. Phys. 16, 409–412 (2020).
ALICE Collaboration. \({}_{\Lambda }{}^{3}{\rm{H}}\) and \({}_{\Lambda }{}^{3}{\rm{H}}\) production in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Lett. B 754, 360–372 (2016).
ALICE Collaboration. Production of 4He and \({}^{4}\bar{{\rm{He}}}\) in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV at the LHC. Nucl. Phys. A 971, 1–20 (2018).
ALICE Collaboration Precision measurement of the mass difference between light nuclei and anti-nuclei. Nat. Phys. 11, 811–814 (2015).
Braun-Munzinger, P. & Dönigus, B. Loosely-bound objects produced in nuclear collisions at the LHC. Nucl. Phys. A 987, 144–201 (2019).
ADS CAS Google Scholar
Ackermann, K. H. et al. STAR detector overview. Nucl. Instrum. Methods A 499, 624–632 (2003).
ADS CAS Google Scholar
Harrison, M., Ludlam, T. & Ozaki, S. RHIC project overview. Nucl. Instrum. Methods A 499, 235–244 (2003).
ADS CAS Google Scholar
Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928).
Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931).
Anderson, C. D. The positive electron. Phys. Rev. 43, 491–494 (1933).
ADS CAS Google Scholar
Chamberlain, O., Segrè, E., Wiegand, C. & Ypsilantis, T. Observation of antiprotons. Phys. Rev. 100, 947–950 (1955).
ADS CAS Google Scholar
Cork, B., Lambertson, G. R., Piccioni, O. & Wenzel, W. A. Antineutrons produced from antiprotons in charge-exchange collisions. Phys. Rev. 104, 1193–1197 (1956).
ADS CAS Google Scholar
Prowse, D. J. & Baldo-Ceolin, M. Anti-lambda hyperon. Phys. Rev. Lett. 1, 179–180 (1958).
ADS CAS Google Scholar
Massam, T., Muller, Th., Righini, B., Schneegans, M. & Zichichi, A. Experimental observation of antideuteron production. Nuovo Cim. 39, 10–14 (1965).
ADS CAS Google Scholar
Dorfan, D. E., Eades, J., Lederman, L. M., Lee, W. & Ting, C. C. Observation of antideuterons. Phys. Rev. Lett. 14, 1003–1006 (1965).
ADS CAS Google Scholar
Antipov, Y. M. et al. Observation of anti-He-3. Yad. Fiz. 12, 311–322 (1970).
CAS Google Scholar
Vishnevsky, N. K. et al. Observation of anti-tritium. Yad. Fiz. 20, 694–708 (1974).
Aguilar, M. et al. Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 117, 091103 (2016).
ADS CAS PubMed Google Scholar
Acharya, S. et al. Measurement of the lifetime and Λ separation energy of \({}_{\Lambda }{}^{3}{\rm{H}}\). Phys. Rev. Lett. 131, 102302 (2023).
ADS CAS PubMed Google Scholar
Pérez-Obiol, A., Gazda, D., Friedman, E. & Gal, A. Revisiting the hypertriton lifetime puzzle. Phys. Lett. B 811, 135916 (2020).
Gal, A., Hungerford, E. V. & Millener, D. J. Strangeness in nuclear physics. Rev. Mod. Phys. 88, 035004 (2016).
Prem, R. J. et al. Lifetimes of hypernuclei, \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\), \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\), \(\genfrac{}{}{0ex}{}{5}{\Lambda }{\rm{H}}\). Phys. Rev. 136, B1803 (1964).
Keyes, G. et al. New measurement of the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\). Phys. Rev. Lett. 20, 819–821 (1968).
ADS CAS Google Scholar
Phillips, R. E. et al. Lifetimes of light hyperfragments. II. Phys. Rev. 180, 1307 (1969).
ADS CAS Google Scholar
Keys, G. et al. Properties of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\). Phys. Rev. D 1, 66–77 (1970).
Keys, G. et al. A measurement of the lifetime of the \(\genfrac{}{}{0ex}{}{5}{\Lambda }{\rm{H}}\) hypernucleus. Nucl. Phys. B 67, 269–283 (1973).
Avramenko, S. et al. A study of the production and lifetime of the lightest relativistic hypernuclei. Nucl. Phys. A 547, 95–100 (1992).
Rappold, C. et al. Hypernuclear spectroscopy of products from 6Li projectiles on a carbon target at 2 A GeV. Nucl. Phys. A 913, 170–184 (2013).
ADS CAS Google Scholar
Adamczyk, L. et al. Measurement of the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) lifetime in Au + Au collisions at the BNL relativistic heavy ion collider. Phys. Rev. C 97, 054909 (2018).
ADS CAS Google Scholar
Abdallah, M. et al. Measurements of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) lifetimes and yields in Au + Au collisions in the high baryon density region. Phys. Rev. Lett. 128, 202301 (2022).
ADS CAS PubMed Google Scholar
Outa, H. et al. Mesonic weak decay of \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{He}}\). Nucl. Phys. A 585, 109–112 (1995).
Acharya, S. et al. \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{3}{\overline{\Lambda }}\overline{{\rm{H}}}\) lifetime measurement in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) 5.02 TeV via two-body decay. Phys. Lett. B 797, 134905 (2019).
Rayet, M. & Dalitz, R. H. The lifetime of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\). Nuovo Cim. XLVI, 8302–8310 (1966).
Congleton, J. G. A simple model of the hypertriton. J. Phys. G Nucl. Part. Phys. 18, 339–357 (1992).
ADS CAS Google Scholar
Kamada, H. et al. π-Mesonic decay of the hypertriton. Phys. Rev. C 57, 1595–1603 (1998).
ADS CAS Google Scholar
Gal, A. et al. Towards resolving the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) lifetime puzzle. Phys. Lett. B 791, 48–53 (2019).
ADS CAS Google Scholar
Hildenbrand, F. & Hammer, H.-W. Lifetime of the hypertriton. Phys. Rev. C 102, 064002 (2020).
ADS CAS Google Scholar
Gal, A. Recent progress on few-body hypernuclei. EPJ Web Conf. 259, 08002 (2022).
CAS Google Scholar
Andronic, A., Braun-Munzinger, P., Stachel, J. & Stöcker, H. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 697, 203–207 (2011).
ADS CAS Google Scholar
Sato, H. & Yazaki, K. On the coalescence model for high energy nuclear reactions. Phys. Lett. B 98, 153–157 (1981).
Steinheimer, J. et al. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: thermal production vs. coalescence. Phys. Lett. B 714, 85–91 (2012).
ADS CAS Google Scholar
Sun, K.-J. & Chen, L.-W. Antimatter \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) hypernucleus production and the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}{/}^{3}{\rm{He}}\) puzzle in relativistic heavy-ion collisions. Phys. Rev. C 93, 064909 (2016).
Armstrong, T. A. et al. Production of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) in central 11.5-GeV/c Au + Pt heavy ion collisions. Phys. Rev. C 70, 024902 (2004).
Abelev, B. I. et al. Identified baryon and meson distributions at large transverse momenta from Au + Au collisions at \(\sqrt{{s}_{NN}}=\) 200 GeV. Phys. Rev. Lett. 97, 152301 (2006).
ADS CAS PubMed Google Scholar
Sun, K.-J., Ko, C. M. & Dönigus, B. Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider. Phys. Lett. B 792, 132–137 (2019).
ADS CAS Google Scholar
Bellini, F. & Kalweit, A. P. Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider. Phys. Rev. C 99, 054905 (2019).
ADS CAS Google Scholar
Armstrong, T. A. et al. Mass dependence of light-nucleus production in ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 83, 5431–5434 (1999).
ADS CAS Google Scholar
Bohm, G. et al. On the lifetime of the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) hypernucleus. Nucl. Phys. B 16, 46–52 (1970).
ADS CAS Google Scholar
Glöckle, W., Miyagawa, K., Kamada, H., Golak, J. & Witala, H. The hypertriton and its decays. Nucl. Phys. A 639, 297c–306c (1998).
Kumagai-Fuse, I., Okabe, S. & Akaishi, Y. Pauli effects on pionic decay of light Lambda hypernuclei. Nucl. Phys. A 585, 365c–366c (1995).
Outa, H. et al. Mesonic and non-mesonic decay widths of \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{He}}\). Nucl. Phys. A 639, 251c–260c (1998).
Llope, W. et al. The TOFp/pVPD time-of-flight system for STAR. Nucl. Instrum. Methods Phys. Res. A 522, 252–273 (2004).
ADS CAS Google Scholar
Adler, C. et al. The RHIC zero degree calorimeters. Nucl. Instrum. Methods Phys. Res. A 470, 488–499 (2001).
ADS CAS Google Scholar
Llope, W. JandS. T. A. Rcollaboration et al. Multigap RPCs in the STAR experiment at RHIC. Nucl. Instrum. Methods Phys. Res. A 661, S110–S113 (2012).
CAS Google Scholar
Beddo, M. et al. The STAR Barrel Electromagnetic Calorimeter. Nucl. Instrum. Methods Phys. Res. A 499, 725–739 (2003).
ADS CAS Google Scholar
Anderson, M. et al. The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods Phys. Res. A 499, 659–678 (2003).
ADS CAS Google Scholar
Bichsel, H. A method to improve tracking and particle identification in TPCs and silicon detectors. Nucl. Instrum. Methods Phys. Res. A 562, 154–197 (2006).
ADS CAS Google Scholar
Kisel, I., Kulakov, I. & Zyzak, M. Standalone First Level Event Selection Package for the CBM Experiment. In Proc. 18th Real-Time Conference (RT2012) (2012).
Zyzak, M.Online Selection of Short-lived Particles on Many-Core Computer Architectures in the CBM Experiment at FAIR. PhD thesis, Johann Wolfgang Goethe-Universität (2016).
Ju, X.-Y. et al. Applying the Kalman filter particle method to strange and open charm hadron reconstruction in the STAR experiment. Nucl. Sci. Tech. 34, 158 (2023).
CAS Google Scholar
Ablyazimov, T. O., Zyzak, M. V., Ivanov, V. V. & Kisel, P. I. Kalman filter-based fast track reconstruction for charged particles in a Compressed Baryonic Matter experiment using parallel computing on a multicore server at the Laboratory of Information Technologies, Joint Institute for Nuclear Research. Phys. Part. Nucl. Lett. 12, 423–427 (2015).
CAS Google Scholar
Eckert, P., Achenbach, P. et al. Chart of hypernuclides – hypernuclear structure and decay data. https://hypernuclei.kph.uni-mainz.de (2023).
Cowan, G., Cranmer, K., Gross, E. & Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011).
Brun, R., Bruyant, F., Maire, M., McPherson, A. C. & Zanarini, P. GEANT3. Report No. CERN-DD-EE-84-1 (CERN, 1987).
Fine, V. & Nevski, P. OO Model of STAR Detector for Simulation, Visualisation and Reconstruction. In 11th International Conference on Computing in High-Energy and Nuclear Physics, 143–146 (2000).
Group, P. D. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
Schnedermann, E., Sollfrank, J. & Heinz, U. W. Thermal phenomenology of hadrons from 200 A/GeV S + S collisions. Phys. Rev. C 48, 2462–2475 (1993).
ADS CAS Google Scholar
STAR experiment at Relativistic Heavy Ion Collider. GitHub; https://github.com/star-bnl (2024).
Acknowledgements
We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the US DOE Office of Science, the US National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre and WUT ID-UB of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan Society for the Promotion of Science (JSPS) and Agencia Nacional de Investigación y Desarrollo (ANID) of Chile. We thank the Joint Department for Nuclear Physics, co-founded by the Lanzhou University and Institute of Modern Physics, Chinese Academy of Sciences, for the contributions of its students J.Wu and F. Zhao to this paper.
Author information
Author notes
Deceased: W. B. Schmidke
Authors and Affiliations
American University in Cairo, New Cairo, Egypt
M. I. Abdulhamid&A. Hamed
Texas A&M University, College Station, TX, USA
B. E. Aboona,C. A. Gagliardi,Y. Liu,S. Mioduszewski&J. Tyler
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
J. Adam,J. Bielcik,J. Ceska,P. Chaloupka,A. Das,L. Holub,R. Licenik,O. Lomicky,O. Mezhanska,J. Mrazkova,S. Pal,V. Prozorova,M. Robotkova,M. Svoboda,T. Truhlar&B. A. Trzeciak
Faculty of Physics and Applied Computer Science, AGH University of Krakow, Cracow, Poland
L. Adamczyk&M. Przybycien
The Ohio State University, Columbus, OH, USA
J. R. Adams,J. D. Brandenburg,T. J. Humanic,Y. V. Khyzhniak,L. K. Kosarzewski,M. A. Lisa,X. Liu&M. Stefaniak
Panjab University, Chandigarh, India
I. Aggarwal,M. M. Aggarwal,A. Dhamija,L. Kumar,A. S. Nain,N. K. Pruthi,A. Rana&J. Singh
Variable Energy Cyclotron Centre, Kolkata, India
Z. Ahammed
Brookhaven National Laboratory, Upton, NY, USA
E. C. Aschenauer,W. Christie,X. Chu,J. C. Dunlop,O. Eyser,Y. Fisyak,W. Guryn,A. Jentsch,J. Jia,K. Kauder,A. Kiselev,J. M. Landgraf,J. Lauret,A. Lebedev,J. H. Lee,N. Lewis,R. S. Longacre,R. Ma,A. Ogawa,B. S. Page,R. Pak,L. Ruan,W. B. Schmidke,P. V. Shanmuganathan,A. H. Tang,P. Tribedy,O. D. Tsai,C. Y. Tsang,Z. Tu,T. Ullrich,G. Van Buren,J. Vanek,F. Videbæk,J. C. Webb,K. Yip,Z. Zhang,M. Zhao&M. Zurek
Indian Institute Technology, Patna, India
S. Aslam&N. Shah
Abilene Christian University, Abilene, TX, USA
J. Atchison&J. L. Drachenberg
Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
V. Bairathi&S. Kabana
University of Houston, Houston, TX, USA
J. G. Ball Cap,R. Bellwied,C. Broodo,R. Manikandhan&A. R. Timmins
University of California, Riverside, Riverside, TX, USA
K. Barish,D. Chen,D. Kapukchyan,X. Liang,E. M. Loyd,A. Paul,C. Racz&R. Seto
University of Jammu, Jammu, India
P. Bhagat,A. Bhasin,A. Gupta,A. Jalotra&M. Sharma
State University of New York, Stony Brook, NY, USA
S. Bhatta,S. L. Huang,J. Jia,R. Lacey,N. Magdy,C. Sun&Z. Yan
ELTE Eötvös Loránd University, Budapest, Hungary
S. R. Bhosale,M. Csanád,D. Kincses&M. I. Nagy
Nuclear Physics Institute of the CAS, Rez, Czech Republic
J. Bielcikova,R. Licenik,J. Mrazkova,M. Robotkova,M. Sumbera&M. Svoboda
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
X. Z. Cai
Yale University, New Haven, CT, USA
H. Caines,F. A. Flor,J. W. Harris,T. Liu,I. Mooney,D. B. Nemes,N. Smirnov,Y. Song&A. C. Tamis
University of California, Davis, Davis, CA, USA
M. Calderón de la Barca Sánchez,D. Cebra,M. D. Harasty,M. C. Labonte&Z. W. Sweger
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
I. Chakaberia,X. Dong,Y. Hu,Y. Ji,H. S. Ko,G. Odyniec,A. Pandav,J. H. Thomas,H. Wieman,N. Xu&Z. Ye
University of California, Los Angeles, Los Angeles, CA, USA
B. K. Chan,Y. Cheng,H. Z. Huang,D. Neff,S. Trentalange,O. D. Tsai,G. Wang,X. Wu&Z. Xu
Indiana University, Bloomington, IN, USA
Z. Chang,W. W. Jacobs&S. W. Wissink
National Institute of Technology, Durgapur, India
A. Chatterjee
Shandong University, Qingdao, China
J. Chen,Z. Chen,T. Gao,X. Gou,Y. He,T. Lin,M. Nie,D. Shen,Y. Shi,J. Wang,X. Wang,Z. Wang,Q. H. Xu,Y. Xu,G. Yan,C. Yang,Q. Yang,L. Yi,Y. Yu,J. Zhang&Y. Zhang
Fudan University, Shanghai, China
J. H. Chen,S. Choudhury,W. He,L. Ma,Y. G. Ma,T. Shao,D. Y. Shen,Q. Y. Shou,B. Xi,C. Zhang&J. Zhao
Tsinghua University, Beijing, China
J. Cheng,X. Huang,Y. Huang,K. Kang,Y. Li,Z. Qin,Y. Wang,Z. G. Xiao&X. Zhu
University of California, Berkeley, Berkeley, CA, USA
H. J. Crawford,J. Engelage,E. G. Judd,J. M. Nelson&C. Perkins
University of Illinois at Chicago, Chicago, IL, USA
G. Dale-Gau,O. Evdokimov,T. Huang,G. Nigmatkulov,G. Wilks&Z. Zhang
University of Heidelberg, Heidelberg, Germany
I. M. Deppner,N. Herrmann,Y. H. Leung,Y. Söhngen&P. C. Weidenkaff
Indian Institute of Science Education and Research, Berhampur, India
P. Dixit,M. Nasim,A. K. Sahoo&N. Sharma
Kent State University, Kent, OH, USA
E. Duckworth,D. Keane,Y. Liang,S. Margetis,S. K. Radhakrishnan,A. I. Sheikh,C. Y. Tsang&Z. Xu
Rice University, Houston, TX, USA
G. Eppley,F. Geurts,Y. Han,C. Jin,W. Li&T. Ljubicic
University of Tsukuba, Tsukuba, Ibaraki, Japan
S. Esumi,M. Isshiki,T. Niida,T. Nonaka,K. Okubo,H. Sako,S. Sato&T. Todoroki
University of Kentucky, Lexington, KY, USA
R. Fatemi,H. Harrison-Smith,D. Kalinkin&M. A. Rosales Aguilar
University of Calabria and INFN-Cosenza, Rende, Italy
S. Fazio
National Cheng Kung University, Tainan, Taiwan
C. J. Feng,H. Huang,Y. Yang&Z. J. Zhang
Purdue University, West Lafayette, IN, USA
Y. Feng,H-S. Li,C. W. Robertson,M. J. Skoby,B. Srivastava,F. Wang&W. Xie
Southern Connecticut State University, New Haven, CT, USA
E. Finch
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
C. Fu,X. H. He,Q. Hu,C. Liu,T. Lu,A. K. Pandey,H. Qiu,S. Singha,X. Sun,J. Wu,X. Zhang,Y. Zhang&F. Zhao
Technische Universität Darmstadt, Darmstadt, Germany
T. Galatyuk,S. Harabasz&F-J. Seck
Temple University, Philadelphia, PA, USA
N. Ghimire,J. D. Nam,B. R. Pokhrel,M. Posik&B. Surrow
Valparaiso University, Valparaiso, IN, USA
A. Gibson,D. Grosnick,T. D. S. Stanislaus&D. G. Underwood
Indian Institute of Science Education and Research, Tirupati, India
K. Gopal,C. Jena,N. R. Sahoo,R. Sharma,S. R. Sharma&P. Sinha
University of Chinese Academy of Sciences, Beijing, China
C. Hu&G. Xie
Central China Normal University, Wuhan, China
Y. Huang,C. Li,H. Liu,L. Liu,Z. Liu,X. F. Luo,K. Mi,S. S. Shi,Y. Wang,J. Wu,Y. Xu,Y. Zhang,S. Zhou&Y. Zhou
University of Science and Technology of China, Hefei, China
X. Ju,D. Li,X. Li,Y. Li,Z. Li,J. Luo,K. Shen,F. Si,Y. Su,Y. Sun,Z. Tang,I. Upsal,K. Wang,Y. Wang,X. Wu,W. Zha,Y. Zhang&J. Zhou
Wayne State University, Detroit, MI, USA
A. Khanal,G. McNamara,J. Putschke,D. J. Stewart,V. Verkest&S. A. Voloshin
Warsaw University of Technology, Warsaw, Poland
D. P. Kikoła,D. Mallick,D. Pawlowska,J. Pluta,P. Roy Chowdhury,S. K. Tripathy,D. Wielanek&H. Zbroszczyk
Frankfurt Institute for Advanced Studies, Frankfurt, Germany
I. Kisel,I. Vassiliev&M. Zyzak
Lehigh University, Bethlehem, PA, USA
A. G. Knospe,T. Protzman,R. Reed&B. C. Schaefer
Wuhan University of Science and Technology, Wuhan, China
H. Li
Guangxi Normal University, Guilin, China
Y. Lin
South China Normal University, Guangzhou, China
G. Liu,S. Yang,Z. Ye,D. Zhang&W. Zhang
University of Texas, Austin, TX, USA
C. Markert&R. L. Ray
National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
B. Mohanty&M. M. Mondal
Sejong University, Seoul, South Korea
S. Oh
Rutgers University, Piscataway, NJ, USA
T. Pani,D. Roy&S. Salur
Institute of Nuclear Physics PAN, Cracow, Poland
B. Pawlik
Max-Planck-Institut für Physik, Munich, Germany
N. Schmitz&P. Seyboth
Creighton University, Omaha, NE, USA
J. Seger&D. Tlusty
Ball State University, Muncie, IN, USA
M. J. Skoby
Huzhou University, Huzhou, China
Y. Sun,J. S. Wang&H. Xu
Michigan State University, East Lansing, MI, USA
T. Tarnowsky&G. D. Westfall
Argonne National Laboratory, Argonne, IL, USA
D. G. Underwood&M. Zurek
United States Naval Academy, Annapolis, MD, USA
R. Witt
Chongqing University, Chongqing, China
S. Zhang
Consortia
STAR Collaboration
- M. I. Abdulhamid
- ,B. E. Aboona
- ,J. Adam
- ,L. Adamczyk
- ,J. R. Adams
- ,I. Aggarwal
- ,M. M. Aggarwal
- ,Z. Ahammed
- ,E. C. Aschenauer
- ,S. Aslam
- ,J. Atchison
- ,V. Bairathi
- ,J. G. Ball Cap
- ,K. Barish
- ,R. Bellwied
- ,P. Bhagat
- ,A. Bhasin
- ,S. Bhatta
- ,S. R. Bhosale
- ,J. Bielcik
- ,J. Bielcikova
- ,J. D. Brandenburg
- ,C. Broodo
- ,X. Z. Cai
- ,H. Caines
- ,M. Calderón de la Barca Sánchez
- ,D. Cebra
- ,J. Ceska
- ,I. Chakaberia
- ,P. Chaloupka
- ,B. K. Chan
- ,Z. Chang
- ,A. Chatterjee
- ,D. Chen
- ,J. Chen
- ,J. H. Chen
- ,Z. Chen
- ,J. Cheng
- ,Y. Cheng
- ,S. Choudhury
- ,W. Christie
- ,X. Chu
- ,H. J. Crawford
- ,M. Csanád
- ,G. Dale-Gau
- ,A. Das
- ,I. M. Deppner
- ,A. Dhamija
- ,P. Dixit
- ,X. Dong
- ,J. L. Drachenberg
- ,E. Duckworth
- ,J. C. Dunlop
- ,J. Engelage
- ,G. Eppley
- ,S. Esumi
- ,O. Evdokimov
- ,O. Eyser
- ,R. Fatemi
- ,S. Fazio
- ,C. J. Feng
- ,Y. Feng
- ,E. Finch
- ,Y. Fisyak
- ,F. A. Flor
- ,C. Fu
- ,C. A. Gagliardi
- ,T. Galatyuk
- ,T. Gao
- ,F. Geurts
- ,N. Ghimire
- ,A. Gibson
- ,K. Gopal
- ,X. Gou
- ,D. Grosnick
- ,A. Gupta
- ,W. Guryn
- ,A. Hamed
- ,Y. Han
- ,S. Harabasz
- ,M. D. Harasty
- ,J. W. Harris
- ,H. Harrison-Smith
- ,W. He
- ,X. H. He
- ,Y. He
- ,N. Herrmann
- ,L. Holub
- ,C. Hu
- ,Q. Hu
- ,Y. Hu
- ,H. Huang
- ,H. Z. Huang
- ,S. L. Huang
- ,T. Huang
- ,X. Huang
- ,Y. Huang
- ,Y. Huang
- ,T. J. Humanic
- ,M. Isshiki
- ,W. W. Jacobs
- ,A. Jalotra
- ,C. Jena
- ,A. Jentsch
- ,Y. Ji
- ,J. Jia
- ,C. Jin
- ,X. Ju
- ,E. G. Judd
- ,S. Kabana
- ,D. Kalinkin
- ,K. Kang
- ,D. Kapukchyan
- ,K. Kauder
- ,D. Keane
- ,A. Khanal
- ,Y. V. Khyzhniak
- ,D. P. Kikoła
- ,D. Kincses
- ,I. Kisel
- ,A. Kiselev
- ,A. G. Knospe
- ,H. S. Ko
- ,L. K. Kosarzewski
- ,L. Kumar
- ,M. C. Labonte
- ,R. Lacey
- ,J. M. Landgraf
- ,J. Lauret
- ,A. Lebedev
- ,J. H. Lee
- ,Y. H. Leung
- ,N. Lewis
- ,C. Li
- ,D. Li
- ,H-S. Li
- ,H. Li
- ,W. Li
- ,X. Li
- ,Y. Li
- ,Y. Li
- ,Z. Li
- ,X. Liang
- ,Y. Liang
- ,R. Licenik
- ,T. Lin
- ,Y. Lin
- ,M. A. Lisa
- ,C. Liu
- ,G. Liu
- ,H. Liu
- ,L. Liu
- ,T. Liu
- ,X. Liu
- ,Y. Liu
- ,Z. Liu
- ,T. Ljubicic
- ,O. Lomicky
- ,R. S. Longacre
- ,E. M. Loyd
- ,T. Lu
- ,J. Luo
- ,X. F. Luo
- ,L. Ma
- ,R. Ma
- ,Y. G. Ma
- ,N. Magdy
- ,D. Mallick
- ,R. Manikandhan
- ,S. Margetis
- ,C. Markert
- ,G. McNamara
- ,O. Mezhanska
- ,K. Mi
- ,S. Mioduszewski
- ,B. Mohanty
- ,M. M. Mondal
- ,I. Mooney
- ,J. Mrazkova
- ,M. I. Nagy
- ,A. S. Nain
- ,J. D. Nam
- ,M. Nasim
- ,D. Neff
- ,J. M. Nelson
- ,D. B. Nemes
- ,M. Nie
- ,G. Nigmatkulov
- ,T. Niida
- ,T. Nonaka
- ,G. Odyniec
- ,A. Ogawa
- ,S. Oh
- ,K. Okubo
- ,B. S. Page
- ,R. Pak
- ,S. Pal
- ,A. Pandav
- ,A. K. Pandey
- ,T. Pani
- ,A. Paul
- ,B. Pawlik
- ,D. Pawlowska
- ,C. Perkins
- ,J. Pluta
- ,B. R. Pokhrel
- ,M. Posik
- ,T. Protzman
- ,V. Prozorova
- ,N. K. Pruthi
- ,M. Przybycien
- ,J. Putschke
- ,Z. Qin
- ,H. Qiu
- ,C. Racz
- ,S. K. Radhakrishnan
- ,A. Rana
- ,R. L. Ray
- ,R. Reed
- ,C. W. Robertson
- ,M. Robotkova
- ,M. A. Rosales Aguilar
- ,D. Roy
- ,P. Roy Chowdhury
- ,L. Ruan
- ,A. K. Sahoo
- ,N. R. Sahoo
- ,H. Sako
- ,S. Salur
- ,S. Sato
- ,B. C. Schaefer
- ,W. B. Schmidke
- ,N. Schmitz
- ,F-J. Seck
- ,J. Seger
- ,R. Seto
- ,P. Seyboth
- ,N. Shah
- ,P. V. Shanmuganathan
- ,T. Shao
- ,M. Sharma
- ,N. Sharma
- ,R. Sharma
- ,S. R. Sharma
- ,A. I. Sheikh
- ,D. Shen
- ,D. Y. Shen
- ,K. Shen
- ,S. S. Shi
- ,Y. Shi
- ,Q. Y. Shou
- ,F. Si
- ,J. Singh
- ,S. Singha
- ,P. Sinha
- ,M. J. Skoby
- ,N. Smirnov
- ,Y. Söhngen
- ,Y. Song
- ,B. Srivastava
- ,T. D. S. Stanislaus
- ,M. Stefaniak
- ,D. J. Stewart
- ,Y. Su
- ,M. Sumbera
- ,C. Sun
- ,X. Sun
- ,Y. Sun
- ,Y. Sun
- ,B. Surrow
- ,M. Svoboda
- ,Z. W. Sweger
- ,A. C. Tamis
- ,A. H. Tang
- ,Z. Tang
- ,T. Tarnowsky
- ,J. H. Thomas
- ,A. R. Timmins
- ,D. Tlusty
- ,T. Todoroki
- ,S. Trentalange
- ,P. Tribedy
- ,S. K. Tripathy
- ,T. Truhlar
- ,B. A. Trzeciak
- ,O. D. Tsai
- ,C. Y. Tsang
- ,Z. Tu
- ,J. Tyler
- ,T. Ullrich
- ,D. G. Underwood
- ,I. Upsal
- ,G. Van Buren
- ,J. Vanek
- ,I. Vassiliev
- ,V. Verkest
- ,F. Videbæk
- ,S. A. Voloshin
- ,F. Wang
- ,G. Wang
- ,J. S. Wang
- ,J. Wang
- ,K. Wang
- ,X. Wang
- ,Y. Wang
- ,Y. Wang
- ,Y. Wang
- ,Z. Wang
- ,J. C. Webb
- ,P. C. Weidenkaff
- ,G. D. Westfall
- ,D. Wielanek
- ,H. Wieman
- ,G. Wilks
- ,S. W. Wissink
- ,R. Witt
- ,J. Wu
- ,J. Wu
- ,X. Wu
- ,X. Wu
- ,B. Xi
- ,Z. G. Xiao
- ,G. Xie
- ,W. Xie
- ,H. Xu
- ,N. Xu
- ,Q. H. Xu
- ,Y. Xu
- ,Y. Xu
- ,Z. Xu
- ,Z. Xu
- ,G. Yan
- ,Z. Yan
- ,C. Yang
- ,Q. Yang
- ,S. Yang
- ,Y. Yang
- ,Z. Ye
- ,Z. Ye
- ,L. Yi
- ,K. Yip
- ,Y. Yu
- ,H. Zbroszczyk
- ,W. Zha
- ,C. Zhang
- ,D. Zhang
- ,J. Zhang
- ,S. Zhang
- ,W. Zhang
- ,X. Zhang
- ,Y. Zhang
- ,Y. Zhang
- ,Y. Zhang
- ,Y. Zhang
- ,Z. J. Zhang
- ,Z. Zhang
- ,Z. Zhang
- ,F. Zhao
- ,J. Zhao
- ,M. Zhao
- ,J. Zhou
- ,S. Zhou
- ,Y. Zhou
- ,X. Zhu
- ,M. Zurek
- &M. Zyzak
Contributions
All authors contributed to all research steps and writing of the paper.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Benjamin Dönigus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Illustration of the decay topology of a hypernucleus and the variables for the selection criteria.
The arrows indicate the relation between variables and their corresponding geometric distances.
Extended Data Fig. 2 Reconstruction efficiency as a function of L/(βγ) obtained from the embedding Monte Carlo technique.
Hypernuclei have stricter topological cuts than antihypernuclei to suppress knock-out 3He and 4He, resulting in lower efficiencies.
Extended Data Fig. 3
\({}_{\Lambda }{}^{3}{\rm{H}}\), \({}_{\bar{\Lambda }}{}^{3}\bar{{\rm{H}}}\), \({}_{\Lambda }{}^{4}{\rm{H}}\) and \({}_{\bar{\Lambda }}{}^{4}\bar{{\rm{H}}}\) candidate invariant-mass distributions in different L/βγ intervals.
Extended Data Fig. 4 dN/d(L/βγ) as a function of L/βγ for Λ and \(\bar{\Lambda }\).
The exponential fits are applied to obtain their lifetimes.
Extended Data Fig. 5 Efficiency corrected pT spectra for 3He, \({}^{3}\bar{{\rm{He}}}\), \({}_{\Lambda }{}^{3}{\rm{H}}\), and \({}_{\bar{\Lambda }}{}^{3}\bar{{\rm{H}}}\).
The spectra are in the phase space of ∣y∣ < 0.7 with only minimum-bias triggered events. The spectra are not normalized by the number of events. The lines represent the BW-function fits.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
STAR Collaboration. Observation of the antimatter hypernucleus \({}_{\bar{{\boldsymbol{\Lambda }}}}{}^{{\bf{4}}}\bar{{\bf{H}}}\). Nature 632, 1026–1031 (2024). https://doi.org/10.1038/s41586-024-07823-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-024-07823-0