Observation of the antimatter hypernucleus $${}_{\bar{{\boldsymbol{\Lambda }}}}{}^{{\bf{4}}}\bar{{\bf{H}}}$$ (2024)

Data availability

All raw data for this study were collected using the STAR detector at Brookhaven National Laboratory and are not available to the public. Derived data supporting the findings of this study are publicly available in the HEPData repository (https://www.hepdata.net/record/145132) or from the corresponding author on request.

Code availability

The codes to process raw data collected by the STAR detector are publicly available on GitHub77 (https://github.com/star-bnl). The codes to analyse the produced data are not publicly available.

References

  1. STAR Collaboration et al. Experimental and theoretical challenges in the search for the quark–gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005).

    ADS Google Scholar

  2. PHENIX Collaboration et al. Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 757, 184–283 (2005).

    ADS Google Scholar

  3. PHOBOS Collaboration et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005).

    ADS Google Scholar

  4. Arsene, I. et al. Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005).

    ADS Google Scholar

  5. Muller, B., Schukraft, J. & Wyslouch, B. First results from Pb+Pb collisions at the LHC. Annu. Rev. Nucl. Part. Sci. 62, 361–386 (2012).

    ADS CAS Google Scholar

  6. Adam, J. et al. Beam energy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 99, 064905 (2019).

    ADS CAS Google Scholar

  7. The STAR Collaboration et al. Observation of an antimatter hypernucleus. Science 328, 58–62 (2010).

    Google Scholar

  8. The STAR Collaboration et al. Observation of the antimatter helium-4 nucleus. Nature 473, 353–356 (2011).

    ADS Google Scholar

  9. Chen, J., Keane, D., Ma, Y.-G., Tang, A. & Xu, Z. Antinuclei in heavy-ion collisions. Phys. Rep. 760, 1–39 (2018).

    ADS MathSciNet CAS Google Scholar

  10. The STAR Collaboration Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton. Nat. Phys. 16, 409–412 (2020).

    Google Scholar

  11. ALICE Collaboration. \({}_{\Lambda }{}^{3}{\rm{H}}\) and \({}_{\Lambda }{}^{3}{\rm{H}}\) production in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV. Phys. Lett. B 754, 360–372 (2016).

    ADS Google Scholar

  12. ALICE Collaboration. Production of 4He and \({}^{4}\bar{{\rm{He}}}\) in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV at the LHC. Nucl. Phys. A 971, 1–20 (2018).

    ADS Google Scholar

  13. ALICE Collaboration Precision measurement of the mass difference between light nuclei and anti-nuclei. Nat. Phys. 11, 811–814 (2015).

    Google Scholar

  14. Braun-Munzinger, P. & Dönigus, B. Loosely-bound objects produced in nuclear collisions at the LHC. Nucl. Phys. A 987, 144–201 (2019).

    ADS CAS Google Scholar

  15. Ackermann, K. H. et al. STAR detector overview. Nucl. Instrum. Methods A 499, 624–632 (2003).

    ADS CAS Google Scholar

  16. Harrison, M., Ludlam, T. & Ozaki, S. RHIC project overview. Nucl. Instrum. Methods A 499, 235–244 (2003).

    ADS CAS Google Scholar

  17. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928).

    ADS Google Scholar

  18. Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931).

    ADS Google Scholar

  19. Anderson, C. D. The positive electron. Phys. Rev. 43, 491–494 (1933).

    ADS CAS Google Scholar

  20. Chamberlain, O., Segrè, E., Wiegand, C. & Ypsilantis, T. Observation of antiprotons. Phys. Rev. 100, 947–950 (1955).

    ADS CAS Google Scholar

  21. Cork, B., Lambertson, G. R., Piccioni, O. & Wenzel, W. A. Antineutrons produced from antiprotons in charge-exchange collisions. Phys. Rev. 104, 1193–1197 (1956).

    ADS CAS Google Scholar

  22. Prowse, D. J. & Baldo-Ceolin, M. Anti-lambda hyperon. Phys. Rev. Lett. 1, 179–180 (1958).

    ADS CAS Google Scholar

  23. Massam, T., Muller, Th., Righini, B., Schneegans, M. & Zichichi, A. Experimental observation of antideuteron production. Nuovo Cim. 39, 10–14 (1965).

    ADS CAS Google Scholar

  24. Dorfan, D. E., Eades, J., Lederman, L. M., Lee, W. & Ting, C. C. Observation of antideuterons. Phys. Rev. Lett. 14, 1003–1006 (1965).

    ADS CAS Google Scholar

  25. Antipov, Y. M. et al. Observation of anti-He-3. Yad. Fiz. 12, 311–322 (1970).

    CAS Google Scholar

  26. Vishnevsky, N. K. et al. Observation of anti-tritium. Yad. Fiz. 20, 694–708 (1974).

    Google Scholar

  27. Aguilar, M. et al. Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 117, 091103 (2016).

    ADS CAS PubMed Google Scholar

  28. Acharya, S. et al. Measurement of the lifetime and Λ separation energy of \({}_{\Lambda }{}^{3}{\rm{H}}\). Phys. Rev. Lett. 131, 102302 (2023).

    ADS CAS PubMed Google Scholar

  29. Pérez-Obiol, A., Gazda, D., Friedman, E. & Gal, A. Revisiting the hypertriton lifetime puzzle. Phys. Lett. B 811, 135916 (2020).

    Google Scholar

  30. Gal, A., Hungerford, E. V. & Millener, D. J. Strangeness in nuclear physics. Rev. Mod. Phys. 88, 035004 (2016).

    ADS Google Scholar

  31. Prem, R. J. et al. Lifetimes of hypernuclei, \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\), \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\), \(\genfrac{}{}{0ex}{}{5}{\Lambda }{\rm{H}}\). Phys. Rev. 136, B1803 (1964).

    Google Scholar

  32. Keyes, G. et al. New measurement of the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\). Phys. Rev. Lett. 20, 819–821 (1968).

    ADS CAS Google Scholar

  33. Phillips, R. E. et al. Lifetimes of light hyperfragments. II. Phys. Rev. 180, 1307 (1969).

    ADS CAS Google Scholar

  34. Keys, G. et al. Properties of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\). Phys. Rev. D 1, 66–77 (1970).

    ADS Google Scholar

  35. Keys, G. et al. A measurement of the lifetime of the \(\genfrac{}{}{0ex}{}{5}{\Lambda }{\rm{H}}\) hypernucleus. Nucl. Phys. B 67, 269–283 (1973).

    ADS Google Scholar

  36. Avramenko, S. et al. A study of the production and lifetime of the lightest relativistic hypernuclei. Nucl. Phys. A 547, 95–100 (1992).

    ADS Google Scholar

  37. Rappold, C. et al. Hypernuclear spectroscopy of products from 6Li projectiles on a carbon target at 2 A GeV. Nucl. Phys. A 913, 170–184 (2013).

    ADS CAS Google Scholar

  38. Adamczyk, L. et al. Measurement of the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) lifetime in Au + Au collisions at the BNL relativistic heavy ion collider. Phys. Rev. C 97, 054909 (2018).

    ADS CAS Google Scholar

  39. Abdallah, M. et al. Measurements of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) lifetimes and yields in Au + Au collisions in the high baryon density region. Phys. Rev. Lett. 128, 202301 (2022).

    ADS CAS PubMed Google Scholar

  40. Outa, H. et al. Mesonic weak decay of \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{He}}\). Nucl. Phys. A 585, 109–112 (1995).

    ADS Google Scholar

  41. Acharya, S. et al. \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{3}{\overline{\Lambda }}\overline{{\rm{H}}}\) lifetime measurement in Pb-Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) 5.02 TeV via two-body decay. Phys. Lett. B 797, 134905 (2019).

    Google Scholar

  42. Rayet, M. & Dalitz, R. H. The lifetime of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\). Nuovo Cim. XLVI, 8302–8310 (1966).

    Google Scholar

  43. Congleton, J. G. A simple model of the hypertriton. J. Phys. G Nucl. Part. Phys. 18, 339–357 (1992).

    ADS CAS Google Scholar

  44. Kamada, H. et al. π-Mesonic decay of the hypertriton. Phys. Rev. C 57, 1595–1603 (1998).

    ADS CAS Google Scholar

  45. Gal, A. et al. Towards resolving the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) lifetime puzzle. Phys. Lett. B 791, 48–53 (2019).

    ADS CAS Google Scholar

  46. Hildenbrand, F. & Hammer, H.-W. Lifetime of the hypertriton. Phys. Rev. C 102, 064002 (2020).

    ADS CAS Google Scholar

  47. Gal, A. Recent progress on few-body hypernuclei. EPJ Web Conf. 259, 08002 (2022).

    CAS Google Scholar

  48. Andronic, A., Braun-Munzinger, P., Stachel, J. & Stöcker, H. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 697, 203–207 (2011).

    ADS CAS Google Scholar

  49. Sato, H. & Yazaki, K. On the coalescence model for high energy nuclear reactions. Phys. Lett. B 98, 153–157 (1981).

    ADS Google Scholar

  50. Steinheimer, J. et al. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: thermal production vs. coalescence. Phys. Lett. B 714, 85–91 (2012).

    ADS CAS Google Scholar

  51. Sun, K.-J. & Chen, L.-W. Antimatter \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) hypernucleus production and the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}{/}^{3}{\rm{He}}\) puzzle in relativistic heavy-ion collisions. Phys. Rev. C 93, 064909 (2016).

    ADS Google Scholar

  52. Armstrong, T. A. et al. Production of \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) in central 11.5-GeV/c Au + Pt heavy ion collisions. Phys. Rev. C 70, 024902 (2004).

    ADS Google Scholar

  53. Abelev, B. I. et al. Identified baryon and meson distributions at large transverse momenta from Au + Au collisions at \(\sqrt{{s}_{NN}}=\) 200 GeV. Phys. Rev. Lett. 97, 152301 (2006).

    ADS CAS PubMed Google Scholar

  54. Sun, K.-J., Ko, C. M. & Dönigus, B. Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider. Phys. Lett. B 792, 132–137 (2019).

    ADS CAS Google Scholar

  55. Bellini, F. & Kalweit, A. P. Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider. Phys. Rev. C 99, 054905 (2019).

    ADS CAS Google Scholar

  56. Armstrong, T. A. et al. Mass dependence of light-nucleus production in ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 83, 5431–5434 (1999).

    ADS CAS Google Scholar

  57. Bohm, G. et al. On the lifetime of the \(\genfrac{}{}{0ex}{}{3}{\Lambda }{\rm{H}}\) hypernucleus. Nucl. Phys. B 16, 46–52 (1970).

    ADS CAS Google Scholar

  58. Glöckle, W., Miyagawa, K., Kamada, H., Golak, J. & Witala, H. The hypertriton and its decays. Nucl. Phys. A 639, 297c–306c (1998).

    ADS Google Scholar

  59. Kumagai-Fuse, I., Okabe, S. & Akaishi, Y. Pauli effects on pionic decay of light Lambda hypernuclei. Nucl. Phys. A 585, 365c–366c (1995).

    ADS Google Scholar

  60. Outa, H. et al. Mesonic and non-mesonic decay widths of \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{H}}\) and \(\genfrac{}{}{0ex}{}{4}{\Lambda }{\rm{He}}\). Nucl. Phys. A 639, 251c–260c (1998).

    ADS Google Scholar

  61. Llope, W. et al. The TOFp/pVPD time-of-flight system for STAR. Nucl. Instrum. Methods Phys. Res. A 522, 252–273 (2004).

    ADS CAS Google Scholar

  62. Adler, C. et al. The RHIC zero degree calorimeters. Nucl. Instrum. Methods Phys. Res. A 470, 488–499 (2001).

    ADS CAS Google Scholar

  63. Llope, W. JandS. T. A. Rcollaboration et al. Multigap RPCs in the STAR experiment at RHIC. Nucl. Instrum. Methods Phys. Res. A 661, S110–S113 (2012).

    CAS Google Scholar

  64. Beddo, M. et al. The STAR Barrel Electromagnetic Calorimeter. Nucl. Instrum. Methods Phys. Res. A 499, 725–739 (2003).

    ADS CAS Google Scholar

  65. Anderson, M. et al. The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods Phys. Res. A 499, 659–678 (2003).

    ADS CAS Google Scholar

  66. Bichsel, H. A method to improve tracking and particle identification in TPCs and silicon detectors. Nucl. Instrum. Methods Phys. Res. A 562, 154–197 (2006).

    ADS CAS Google Scholar

  67. Kisel, I., Kulakov, I. & Zyzak, M. Standalone First Level Event Selection Package for the CBM Experiment. In Proc. 18th Real-Time Conference (RT2012) (2012).

  68. Zyzak, M.Online Selection of Short-lived Particles on Many-Core Computer Architectures in the CBM Experiment at FAIR. PhD thesis, Johann Wolfgang Goethe-Universität (2016).

  69. Ju, X.-Y. et al. Applying the Kalman filter particle method to strange and open charm hadron reconstruction in the STAR experiment. Nucl. Sci. Tech. 34, 158 (2023).

    CAS Google Scholar

  70. Ablyazimov, T. O., Zyzak, M. V., Ivanov, V. V. & Kisel, P. I. Kalman filter-based fast track reconstruction for charged particles in a Compressed Baryonic Matter experiment using parallel computing on a multicore server at the Laboratory of Information Technologies, Joint Institute for Nuclear Research. Phys. Part. Nucl. Lett. 12, 423–427 (2015).

    CAS Google Scholar

  71. Eckert, P., Achenbach, P. et al. Chart of hypernuclides – hypernuclear structure and decay data. https://hypernuclei.kph.uni-mainz.de (2023).

  72. Cowan, G., Cranmer, K., Gross, E. & Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011).

    ADS Google Scholar

  73. Brun, R., Bruyant, F., Maire, M., McPherson, A. C. & Zanarini, P. GEANT3. Report No. CERN-DD-EE-84-1 (CERN, 1987).

  74. Fine, V. & Nevski, P. OO Model of STAR Detector for Simulation, Visualisation and Reconstruction. In 11th International Conference on Computing in High-Energy and Nuclear Physics, 143–146 (2000).

  75. Group, P. D. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Google Scholar

  76. Schnedermann, E., Sollfrank, J. & Heinz, U. W. Thermal phenomenology of hadrons from 200 A/GeV S + S collisions. Phys. Rev. C 48, 2462–2475 (1993).

    ADS CAS Google Scholar

  77. STAR experiment at Relativistic Heavy Ion Collider. GitHub; https://github.com/star-bnl (2024).

Download references

Acknowledgements

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the US DOE Office of Science, the US National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre and WUT ID-UB of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan Society for the Promotion of Science (JSPS) and Agencia Nacional de Investigación y Desarrollo (ANID) of Chile. We thank the Joint Department for Nuclear Physics, co-founded by the Lanzhou University and Institute of Modern Physics, Chinese Academy of Sciences, for the contributions of its students J.Wu and F. Zhao to this paper.

Author information

Author notes

  1. Deceased: W. B. Schmidke

Authors and Affiliations

  1. American University in Cairo, New Cairo, Egypt

    M. I. Abdulhamid&A. Hamed

  2. Texas A&M University, College Station, TX, USA

    B. E. Aboona,C. A. Gagliardi,Y. Liu,S. Mioduszewski&J. Tyler

  3. Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

    J. Adam,J. Bielcik,J. Ceska,P. Chaloupka,A. Das,L. Holub,R. Licenik,O. Lomicky,O. Mezhanska,J. Mrazkova,S. Pal,V. Prozorova,M. Robotkova,M. Svoboda,T. Truhlar&B. A. Trzeciak

  4. Faculty of Physics and Applied Computer Science, AGH University of Krakow, Cracow, Poland

    L. Adamczyk&M. Przybycien

  5. The Ohio State University, Columbus, OH, USA

    J. R. Adams,J. D. Brandenburg,T. J. Humanic,Y. V. Khyzhniak,L. K. Kosarzewski,M. A. Lisa,X. Liu&M. Stefaniak

  6. Panjab University, Chandigarh, India

    I. Aggarwal,M. M. Aggarwal,A. Dhamija,L. Kumar,A. S. Nain,N. K. Pruthi,A. Rana&J. Singh

  7. Variable Energy Cyclotron Centre, Kolkata, India

    Z. Ahammed

  8. Brookhaven National Laboratory, Upton, NY, USA

    E. C. Aschenauer,W. Christie,X. Chu,J. C. Dunlop,O. Eyser,Y. Fisyak,W. Guryn,A. Jentsch,J. Jia,K. Kauder,A. Kiselev,J. M. Landgraf,J. Lauret,A. Lebedev,J. H. Lee,N. Lewis,R. S. Longacre,R. Ma,A. Ogawa,B. S. Page,R. Pak,L. Ruan,W. B. Schmidke,P. V. Shanmuganathan,A. H. Tang,P. Tribedy,O. D. Tsai,C. Y. Tsang,Z. Tu,T. Ullrich,G. Van Buren,J. Vanek,F. Videbæk,J. C. Webb,K. Yip,Z. Zhang,M. Zhao&M. Zurek

  9. Indian Institute Technology, Patna, India

    S. Aslam&N. Shah

  10. Abilene Christian University, Abilene, TX, USA

    J. Atchison&J. L. Drachenberg

  11. Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile

    V. Bairathi&S. Kabana

  12. University of Houston, Houston, TX, USA

    J. G. Ball Cap,R. Bellwied,C. Broodo,R. Manikandhan&A. R. Timmins

  13. University of California, Riverside, Riverside, TX, USA

    K. Barish,D. Chen,D. Kapukchyan,X. Liang,E. M. Loyd,A. Paul,C. Racz&R. Seto

  14. University of Jammu, Jammu, India

    P. Bhagat,A. Bhasin,A. Gupta,A. Jalotra&M. Sharma

  15. State University of New York, Stony Brook, NY, USA

    S. Bhatta,S. L. Huang,J. Jia,R. Lacey,N. Magdy,C. Sun&Z. Yan

  16. ELTE Eötvös Loránd University, Budapest, Hungary

    S. R. Bhosale,M. Csanád,D. Kincses&M. I. Nagy

  17. Nuclear Physics Institute of the CAS, Rez, Czech Republic

    J. Bielcikova,R. Licenik,J. Mrazkova,M. Robotkova,M. Sumbera&M. Svoboda

  18. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China

    X. Z. Cai

  19. Yale University, New Haven, CT, USA

    H. Caines,F. A. Flor,J. W. Harris,T. Liu,I. Mooney,D. B. Nemes,N. Smirnov,Y. Song&A. C. Tamis

  20. University of California, Davis, Davis, CA, USA

    M. Calderón de la Barca Sánchez,D. Cebra,M. D. Harasty,M. C. Labonte&Z. W. Sweger

  21. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    I. Chakaberia,X. Dong,Y. Hu,Y. Ji,H. S. Ko,G. Odyniec,A. Pandav,J. H. Thomas,H. Wieman,N. Xu&Z. Ye

  22. University of California, Los Angeles, Los Angeles, CA, USA

    B. K. Chan,Y. Cheng,H. Z. Huang,D. Neff,S. Trentalange,O. D. Tsai,G. Wang,X. Wu&Z. Xu

  23. Indiana University, Bloomington, IN, USA

    Z. Chang,W. W. Jacobs&S. W. Wissink

  24. National Institute of Technology, Durgapur, India

    A. Chatterjee

  25. Shandong University, Qingdao, China

    J. Chen,Z. Chen,T. Gao,X. Gou,Y. He,T. Lin,M. Nie,D. Shen,Y. Shi,J. Wang,X. Wang,Z. Wang,Q. H. Xu,Y. Xu,G. Yan,C. Yang,Q. Yang,L. Yi,Y. Yu,J. Zhang&Y. Zhang

  26. Fudan University, Shanghai, China

    J. H. Chen,S. Choudhury,W. He,L. Ma,Y. G. Ma,T. Shao,D. Y. Shen,Q. Y. Shou,B. Xi,C. Zhang&J. Zhao

  27. Tsinghua University, Beijing, China

    J. Cheng,X. Huang,Y. Huang,K. Kang,Y. Li,Z. Qin,Y. Wang,Z. G. Xiao&X. Zhu

  28. University of California, Berkeley, Berkeley, CA, USA

    H. J. Crawford,J. Engelage,E. G. Judd,J. M. Nelson&C. Perkins

  29. University of Illinois at Chicago, Chicago, IL, USA

    G. Dale-Gau,O. Evdokimov,T. Huang,G. Nigmatkulov,G. Wilks&Z. Zhang

  30. University of Heidelberg, Heidelberg, Germany

    I. M. Deppner,N. Herrmann,Y. H. Leung,Y. Söhngen&P. C. Weidenkaff

  31. Indian Institute of Science Education and Research, Berhampur, India

    P. Dixit,M. Nasim,A. K. Sahoo&N. Sharma

  32. Kent State University, Kent, OH, USA

    E. Duckworth,D. Keane,Y. Liang,S. Margetis,S. K. Radhakrishnan,A. I. Sheikh,C. Y. Tsang&Z. Xu

  33. Rice University, Houston, TX, USA

    G. Eppley,F. Geurts,Y. Han,C. Jin,W. Li&T. Ljubicic

  34. University of Tsukuba, Tsukuba, Ibaraki, Japan

    S. Esumi,M. Isshiki,T. Niida,T. Nonaka,K. Okubo,H. Sako,S. Sato&T. Todoroki

  35. University of Kentucky, Lexington, KY, USA

    R. Fatemi,H. Harrison-Smith,D. Kalinkin&M. A. Rosales Aguilar

  36. University of Calabria and INFN-Cosenza, Rende, Italy

    S. Fazio

  37. National Cheng Kung University, Tainan, Taiwan

    C. J. Feng,H. Huang,Y. Yang&Z. J. Zhang

  38. Purdue University, West Lafayette, IN, USA

    Y. Feng,H-S. Li,C. W. Robertson,M. J. Skoby,B. Srivastava,F. Wang&W. Xie

  39. Southern Connecticut State University, New Haven, CT, USA

    E. Finch

  40. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

    C. Fu,X. H. He,Q. Hu,C. Liu,T. Lu,A. K. Pandey,H. Qiu,S. Singha,X. Sun,J. Wu,X. Zhang,Y. Zhang&F. Zhao

  41. Technische Universität Darmstadt, Darmstadt, Germany

    T. Galatyuk,S. Harabasz&F-J. Seck

  42. Temple University, Philadelphia, PA, USA

    N. Ghimire,J. D. Nam,B. R. Pokhrel,M. Posik&B. Surrow

  43. Valparaiso University, Valparaiso, IN, USA

    A. Gibson,D. Grosnick,T. D. S. Stanislaus&D. G. Underwood

  44. Indian Institute of Science Education and Research, Tirupati, India

    K. Gopal,C. Jena,N. R. Sahoo,R. Sharma,S. R. Sharma&P. Sinha

  45. University of Chinese Academy of Sciences, Beijing, China

    C. Hu&G. Xie

  46. Central China Normal University, Wuhan, China

    Y. Huang,C. Li,H. Liu,L. Liu,Z. Liu,X. F. Luo,K. Mi,S. S. Shi,Y. Wang,J. Wu,Y. Xu,Y. Zhang,S. Zhou&Y. Zhou

  47. University of Science and Technology of China, Hefei, China

    X. Ju,D. Li,X. Li,Y. Li,Z. Li,J. Luo,K. Shen,F. Si,Y. Su,Y. Sun,Z. Tang,I. Upsal,K. Wang,Y. Wang,X. Wu,W. Zha,Y. Zhang&J. Zhou

  48. Wayne State University, Detroit, MI, USA

    A. Khanal,G. McNamara,J. Putschke,D. J. Stewart,V. Verkest&S. A. Voloshin

  49. Warsaw University of Technology, Warsaw, Poland

    D. P. Kikoła,D. Mallick,D. Pawlowska,J. Pluta,P. Roy Chowdhury,S. K. Tripathy,D. Wielanek&H. Zbroszczyk

  50. Frankfurt Institute for Advanced Studies, Frankfurt, Germany

    I. Kisel,I. Vassiliev&M. Zyzak

  51. Lehigh University, Bethlehem, PA, USA

    A. G. Knospe,T. Protzman,R. Reed&B. C. Schaefer

  52. Wuhan University of Science and Technology, Wuhan, China

    H. Li

  53. Guangxi Normal University, Guilin, China

    Y. Lin

  54. South China Normal University, Guangzhou, China

    G. Liu,S. Yang,Z. Ye,D. Zhang&W. Zhang

  55. University of Texas, Austin, TX, USA

    C. Markert&R. L. Ray

  56. National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India

    B. Mohanty&M. M. Mondal

  57. Sejong University, Seoul, South Korea

    S. Oh

  58. Rutgers University, Piscataway, NJ, USA

    T. Pani,D. Roy&S. Salur

  59. Institute of Nuclear Physics PAN, Cracow, Poland

    B. Pawlik

  60. Max-Planck-Institut für Physik, Munich, Germany

    N. Schmitz&P. Seyboth

  61. Creighton University, Omaha, NE, USA

    J. Seger&D. Tlusty

  62. Ball State University, Muncie, IN, USA

    M. J. Skoby

  63. Huzhou University, Huzhou, China

    Y. Sun,J. S. Wang&H. Xu

  64. Michigan State University, East Lansing, MI, USA

    T. Tarnowsky&G. D. Westfall

  65. Argonne National Laboratory, Argonne, IL, USA

    D. G. Underwood&M. Zurek

  66. United States Naval Academy, Annapolis, MD, USA

    R. Witt

  67. Chongqing University, Chongqing, China

    S. Zhang

Consortia

STAR Collaboration

  • M. I. Abdulhamid
  • ,B. E. Aboona
  • ,J. Adam
  • ,L. Adamczyk
  • ,J. R. Adams
  • ,I. Aggarwal
  • ,M. M. Aggarwal
  • ,Z. Ahammed
  • ,E. C. Aschenauer
  • ,S. Aslam
  • ,J. Atchison
  • ,V. Bairathi
  • ,J. G. Ball Cap
  • ,K. Barish
  • ,R. Bellwied
  • ,P. Bhagat
  • ,A. Bhasin
  • ,S. Bhatta
  • ,S. R. Bhosale
  • ,J. Bielcik
  • ,J. Bielcikova
  • ,J. D. Brandenburg
  • ,C. Broodo
  • ,X. Z. Cai
  • ,H. Caines
  • ,M. Calderón de la Barca Sánchez
  • ,D. Cebra
  • ,J. Ceska
  • ,I. Chakaberia
  • ,P. Chaloupka
  • ,B. K. Chan
  • ,Z. Chang
  • ,A. Chatterjee
  • ,D. Chen
  • ,J. Chen
  • ,J. H. Chen
  • ,Z. Chen
  • ,J. Cheng
  • ,Y. Cheng
  • ,S. Choudhury
  • ,W. Christie
  • ,X. Chu
  • ,H. J. Crawford
  • ,M. Csanád
  • ,G. Dale-Gau
  • ,A. Das
  • ,I. M. Deppner
  • ,A. Dhamija
  • ,P. Dixit
  • ,X. Dong
  • ,J. L. Drachenberg
  • ,E. Duckworth
  • ,J. C. Dunlop
  • ,J. Engelage
  • ,G. Eppley
  • ,S. Esumi
  • ,O. Evdokimov
  • ,O. Eyser
  • ,R. Fatemi
  • ,S. Fazio
  • ,C. J. Feng
  • ,Y. Feng
  • ,E. Finch
  • ,Y. Fisyak
  • ,F. A. Flor
  • ,C. Fu
  • ,C. A. Gagliardi
  • ,T. Galatyuk
  • ,T. Gao
  • ,F. Geurts
  • ,N. Ghimire
  • ,A. Gibson
  • ,K. Gopal
  • ,X. Gou
  • ,D. Grosnick
  • ,A. Gupta
  • ,W. Guryn
  • ,A. Hamed
  • ,Y. Han
  • ,S. Harabasz
  • ,M. D. Harasty
  • ,J. W. Harris
  • ,H. Harrison-Smith
  • ,W. He
  • ,X. H. He
  • ,Y. He
  • ,N. Herrmann
  • ,L. Holub
  • ,C. Hu
  • ,Q. Hu
  • ,Y. Hu
  • ,H. Huang
  • ,H. Z. Huang
  • ,S. L. Huang
  • ,T. Huang
  • ,X. Huang
  • ,Y. Huang
  • ,Y. Huang
  • ,T. J. Humanic
  • ,M. Isshiki
  • ,W. W. Jacobs
  • ,A. Jalotra
  • ,C. Jena
  • ,A. Jentsch
  • ,Y. Ji
  • ,J. Jia
  • ,C. Jin
  • ,X. Ju
  • ,E. G. Judd
  • ,S. Kabana
  • ,D. Kalinkin
  • ,K. Kang
  • ,D. Kapukchyan
  • ,K. Kauder
  • ,D. Keane
  • ,A. Khanal
  • ,Y. V. Khyzhniak
  • ,D. P. Kikoła
  • ,D. Kincses
  • ,I. Kisel
  • ,A. Kiselev
  • ,A. G. Knospe
  • ,H. S. Ko
  • ,L. K. Kosarzewski
  • ,L. Kumar
  • ,M. C. Labonte
  • ,R. Lacey
  • ,J. M. Landgraf
  • ,J. Lauret
  • ,A. Lebedev
  • ,J. H. Lee
  • ,Y. H. Leung
  • ,N. Lewis
  • ,C. Li
  • ,D. Li
  • ,H-S. Li
  • ,H. Li
  • ,W. Li
  • ,X. Li
  • ,Y. Li
  • ,Y. Li
  • ,Z. Li
  • ,X. Liang
  • ,Y. Liang
  • ,R. Licenik
  • ,T. Lin
  • ,Y. Lin
  • ,M. A. Lisa
  • ,C. Liu
  • ,G. Liu
  • ,H. Liu
  • ,L. Liu
  • ,T. Liu
  • ,X. Liu
  • ,Y. Liu
  • ,Z. Liu
  • ,T. Ljubicic
  • ,O. Lomicky
  • ,R. S. Longacre
  • ,E. M. Loyd
  • ,T. Lu
  • ,J. Luo
  • ,X. F. Luo
  • ,L. Ma
  • ,R. Ma
  • ,Y. G. Ma
  • ,N. Magdy
  • ,D. Mallick
  • ,R. Manikandhan
  • ,S. Margetis
  • ,C. Markert
  • ,G. McNamara
  • ,O. Mezhanska
  • ,K. Mi
  • ,S. Mioduszewski
  • ,B. Mohanty
  • ,M. M. Mondal
  • ,I. Mooney
  • ,J. Mrazkova
  • ,M. I. Nagy
  • ,A. S. Nain
  • ,J. D. Nam
  • ,M. Nasim
  • ,D. Neff
  • ,J. M. Nelson
  • ,D. B. Nemes
  • ,M. Nie
  • ,G. Nigmatkulov
  • ,T. Niida
  • ,T. Nonaka
  • ,G. Odyniec
  • ,A. Ogawa
  • ,S. Oh
  • ,K. Okubo
  • ,B. S. Page
  • ,R. Pak
  • ,S. Pal
  • ,A. Pandav
  • ,A. K. Pandey
  • ,T. Pani
  • ,A. Paul
  • ,B. Pawlik
  • ,D. Pawlowska
  • ,C. Perkins
  • ,J. Pluta
  • ,B. R. Pokhrel
  • ,M. Posik
  • ,T. Protzman
  • ,V. Prozorova
  • ,N. K. Pruthi
  • ,M. Przybycien
  • ,J. Putschke
  • ,Z. Qin
  • ,H. Qiu
  • ,C. Racz
  • ,S. K. Radhakrishnan
  • ,A. Rana
  • ,R. L. Ray
  • ,R. Reed
  • ,C. W. Robertson
  • ,M. Robotkova
  • ,M. A. Rosales Aguilar
  • ,D. Roy
  • ,P. Roy Chowdhury
  • ,L. Ruan
  • ,A. K. Sahoo
  • ,N. R. Sahoo
  • ,H. Sako
  • ,S. Salur
  • ,S. Sato
  • ,B. C. Schaefer
  • ,W. B. Schmidke
  • ,N. Schmitz
  • ,F-J. Seck
  • ,J. Seger
  • ,R. Seto
  • ,P. Seyboth
  • ,N. Shah
  • ,P. V. Shanmuganathan
  • ,T. Shao
  • ,M. Sharma
  • ,N. Sharma
  • ,R. Sharma
  • ,S. R. Sharma
  • ,A. I. Sheikh
  • ,D. Shen
  • ,D. Y. Shen
  • ,K. Shen
  • ,S. S. Shi
  • ,Y. Shi
  • ,Q. Y. Shou
  • ,F. Si
  • ,J. Singh
  • ,S. Singha
  • ,P. Sinha
  • ,M. J. Skoby
  • ,N. Smirnov
  • ,Y. Söhngen
  • ,Y. Song
  • ,B. Srivastava
  • ,T. D. S. Stanislaus
  • ,M. Stefaniak
  • ,D. J. Stewart
  • ,Y. Su
  • ,M. Sumbera
  • ,C. Sun
  • ,X. Sun
  • ,Y. Sun
  • ,Y. Sun
  • ,B. Surrow
  • ,M. Svoboda
  • ,Z. W. Sweger
  • ,A. C. Tamis
  • ,A. H. Tang
  • ,Z. Tang
  • ,T. Tarnowsky
  • ,J. H. Thomas
  • ,A. R. Timmins
  • ,D. Tlusty
  • ,T. Todoroki
  • ,S. Trentalange
  • ,P. Tribedy
  • ,S. K. Tripathy
  • ,T. Truhlar
  • ,B. A. Trzeciak
  • ,O. D. Tsai
  • ,C. Y. Tsang
  • ,Z. Tu
  • ,J. Tyler
  • ,T. Ullrich
  • ,D. G. Underwood
  • ,I. Upsal
  • ,G. Van Buren
  • ,J. Vanek
  • ,I. Vassiliev
  • ,V. Verkest
  • ,F. Videbæk
  • ,S. A. Voloshin
  • ,F. Wang
  • ,G. Wang
  • ,J. S. Wang
  • ,J. Wang
  • ,K. Wang
  • ,X. Wang
  • ,Y. Wang
  • ,Y. Wang
  • ,Y. Wang
  • ,Z. Wang
  • ,J. C. Webb
  • ,P. C. Weidenkaff
  • ,G. D. Westfall
  • ,D. Wielanek
  • ,H. Wieman
  • ,G. Wilks
  • ,S. W. Wissink
  • ,R. Witt
  • ,J. Wu
  • ,J. Wu
  • ,X. Wu
  • ,X. Wu
  • ,B. Xi
  • ,Z. G. Xiao
  • ,G. Xie
  • ,W. Xie
  • ,H. Xu
  • ,N. Xu
  • ,Q. H. Xu
  • ,Y. Xu
  • ,Y. Xu
  • ,Z. Xu
  • ,Z. Xu
  • ,G. Yan
  • ,Z. Yan
  • ,C. Yang
  • ,Q. Yang
  • ,S. Yang
  • ,Y. Yang
  • ,Z. Ye
  • ,Z. Ye
  • ,L. Yi
  • ,K. Yip
  • ,Y. Yu
  • ,H. Zbroszczyk
  • ,W. Zha
  • ,C. Zhang
  • ,D. Zhang
  • ,J. Zhang
  • ,S. Zhang
  • ,W. Zhang
  • ,X. Zhang
  • ,Y. Zhang
  • ,Y. Zhang
  • ,Y. Zhang
  • ,Y. Zhang
  • ,Z. J. Zhang
  • ,Z. Zhang
  • ,Z. Zhang
  • ,F. Zhao
  • ,J. Zhao
  • ,M. Zhao
  • ,J. Zhou
  • ,S. Zhou
  • ,Y. Zhou
  • ,X. Zhu
  • ,M. Zurek
  • &M. Zyzak

Contributions

All authors contributed to all research steps and writing of the paper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Benjamin Dönigus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Illustration of the decay topology of a hypernucleus and the variables for the selection criteria.

The arrows indicate the relation between variables and their corresponding geometric distances.

Extended Data Fig. 2 Reconstruction efficiency as a function of L/(βγ) obtained from the embedding Monte Carlo technique.

Hypernuclei have stricter topological cuts than antihypernuclei to suppress knock-out 3He and 4He, resulting in lower efficiencies.

Extended Data Fig. 3

\({}_{\Lambda }{}^{3}{\rm{H}}\), \({}_{\bar{\Lambda }}{}^{3}\bar{{\rm{H}}}\), \({}_{\Lambda }{}^{4}{\rm{H}}\) and \({}_{\bar{\Lambda }}{}^{4}\bar{{\rm{H}}}\) candidate invariant-mass distributions in different L/βγ intervals.

Extended Data Fig. 4 dN/d(L/βγ) as a function of L/βγ for Λ and \(\bar{\Lambda }\).

The exponential fits are applied to obtain their lifetimes.

Extended Data Fig. 5 Efficiency corrected pT spectra for 3He, \({}^{3}\bar{{\rm{He}}}\), \({}_{\Lambda }{}^{3}{\rm{H}}\), and \({}_{\bar{\Lambda }}{}^{3}\bar{{\rm{H}}}\).

The spectra are in the phase space of y < 0.7 with only minimum-bias triggered events. The spectra are not normalized by the number of events. The lines represent the BW-function fits.

Full size table
Full size table
Full size table
Full size table
Full size table
Full size table

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Observation of the antimatter hypernucleus $${}_{\bar{{\boldsymbol{\Lambda }}}}{}^{{\bf{4}}}\bar{{\bf{H}}}$$ (1)

Cite this article

STAR Collaboration. Observation of the antimatter hypernucleus \({}_{\bar{{\boldsymbol{\Lambda }}}}{}^{{\bf{4}}}\bar{{\bf{H}}}\). Nature 632, 1026–1031 (2024). https://doi.org/10.1038/s41586-024-07823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07823-0

Observation of the antimatter hypernucleus $${}_{\bar{{\boldsymbol{\Lambda }}}}{}^{{\bf{4}}}\bar{{\bf{H}}}$$ (2024)

References

Top Articles
Latest Posts
Article information

Author: Barbera Armstrong

Last Updated:

Views: 6757

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Barbera Armstrong

Birthday: 1992-09-12

Address: Suite 993 99852 Daugherty Causeway, Ritchiehaven, VT 49630

Phone: +5026838435397

Job: National Engineer

Hobby: Listening to music, Board games, Photography, Ice skating, LARPing, Kite flying, Rugby

Introduction: My name is Barbera Armstrong, I am a lovely, delightful, cooperative, funny, enchanting, vivacious, tender person who loves writing and wants to share my knowledge and understanding with you.